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Hamilton-Jacobi Equations

Hamilton-Jacobi (HJ) PDE is a class of PDE of the following form:{
𝑢𝑡 + 𝐻 (∇𝑢) = 0 in Ω × (0, 𝑇)
𝑢 = 𝑔 on Ω × {𝑡 = 0},

(1)

where Ω ⊂ R𝑑 is the spatial domain, 𝐻 ∶ R𝑑 → R is the Hamiltonian and
𝑔 ∶ Ω → R is the initial function.

▶ Non-unique
▶ Non-smooth, irrespective of the smoothness of the initial conditions or the

Hamiltonian.

S. Osher and Y. Park (UCLA) Neural Characteristic HJ June 23, 2025 3 / 25



Prior Works: Classical Numerical Methods

1 Mesh-based methods, such as ENO/WENO (OS91; QS05; OS88)
▶ Suffer from curse of dimensionality.

2 Hopf-formula-based causality-free method (DO16; CDOY17; CDOY19)

𝑢 (x, 𝑡) = inf
y

{
𝑡𝐻∗

(x − y
𝑡

)
+ 𝑔 (y)

}
, (2)

where 𝐻∗ (z) = sup
v∈R𝑑

{
zTv − 𝐻 (v)

}
.

▶ Suffer from computing Legendre transform.

3 PMP-based optimal control approaches (KW15; KW17)
▶ Suffer from reduced practical effectiveness due to computing every

single ODE trajectories.

S. Osher and Y. Park (UCLA) Neural Characteristic HJ June 23, 2025 4 / 25



Prior Works: Scientific ML Methods

1 Physics-Informed Neural Networks (PINNs) (DPT94; RPK19) solve the PDE
by minimizing the integrated squared residual of the HJ PDE and the initial
condition:

L (𝑢) =
∫ 𝑇

0

∫
Ω

(
𝑢𝑡 + 𝐻 (x,∇𝑢)

)2
+ 𝜆

∫
Ω
(𝑢 − 𝑔)2 .

▶ No guarantee of obtaining the viscosity solution.

2 Specialized neural network architectures that express Hopf formulas
(DLM20; DDM23)
▶ Limited to specific HJ PDEs.
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Method of Characteristics

Consider the HJ PDE {
𝑢𝑡 + 𝐻 (∇𝑢) = 0 in Ω × (0, 𝑇)
𝑢 = 𝑔 on Ω × {𝑡 = 0}.

(3)

System of characteristic ODEs for (3) is given by the following:
¤x = ∇𝐻 (4a)
¤𝑢 = 𝑞 + pT∇𝐻 = −𝐻 + pT∇𝐻 (4b)
¤𝑞 = 0 (4c)
¤p = 0, (4d)

where the variables 𝑞 and p are shorthand for the partial derivatives 𝑞 = 𝑢𝑡 and
p = ∇𝑢, respectively.
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Characteristic Lines

The characteristic
emanated from x (0) = x0 ∈ Ω is a straight line

x (𝑡) = 𝑡∇𝐻 (p) + x0,

implying that

𝑢 (𝑡, x (𝑡)) = −𝑡𝐻 (p) + 𝑡pT∇𝐻 (p) + 𝑢 (x0, 0)
= −𝑡𝐻 (p) + 𝑡pT∇𝐻 (p) + 𝑔 (x0)
= −𝑡𝐻 (p) + 𝑡pT∇𝐻 (p) + 𝑔 (x − 𝑡∇𝐻 (p)) .
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Implicit Solution Formula

Substituting p = ∇𝑢 (x, 𝑡), we attain the following implicit solution formula for
the HJ PDEs (3) (PO25):

𝑢 (x, 𝑡) = −𝑡𝐻 (∇𝑢) + 𝑡∇𝑢T∇𝐻 (∇𝑢) + 𝑔 (x − 𝑡∇𝐻 (∇𝑢)) . (5)

Theorem 1 (Convex Hamiltonian)

Assume the Hamiltonian 𝐻 is differentiable and satisfies{
p ↦ 𝐻 (p) is strictly convex or concave,
lim |p |→∞

𝐻 (p)
|p | = +∞,

(6)

and the initial function 𝑔 is l.s.c. Then, the continuous function 𝑢 that satisfies the
implicit solution formula (5) coincides with the Hopf-Lax formula (2) of (3) a.e.

▶ Similarly, when 𝑔 is convex (concave), the implicit solution formula coincides
to the Hopf formula, representing the viscosity solution in this case.
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Learning Implicit Solution with Neural Networks

Building upon the implicit solution formula, we propose the following
minimization problem:

min
𝑢
L (𝑢) ∶=

∫ 𝑇

0

∫
Ω

(
𝑢 + 𝑡𝐻 (∇𝑢) − 𝑡∇𝑢T∇𝐻 (∇𝑢) − 𝑔 (x − 𝑡∇𝐻 (∇𝑢))

)2
dx d𝑡.

(7)

▶ Neural representation: Parameterize 𝑢 using a standard artificial neural
network 𝑢𝜃 ∶ R𝑑 × R → R.

▶ Mesh-free: Approximate the integral of (7) using Monte Carlo methods with
randomly sampled collocation points.

▶ Unsupervised Learning: No ground truth solution data is required—the
network learns the viscosity solution solely from 𝐻 and 𝑔.
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Algorithm

Algorithm 1 Algorithm for Learning Implicit Solution of HJ PDEs

1: Initialize the network 𝑢𝜃 with an initial network parameter 𝜃0.
2: for 𝑛 = 0,⋯, 𝑁 do
3: Randomly sample 𝑀 collocations points

{(
x 𝑗 , 𝑡 𝑗

)}𝑀
𝑗=1 ∼ 𝑈 (Ω × [0, 𝑇]).

4: Calculate the loss by Monte Carlo integration

L̂ (𝜃𝑛) =
1
𝑀

𝑀∑
𝑗=1
S
(
𝑢𝜃𝑛

(
x 𝑗 , 𝑡 𝑗

) )2
.

5: Update 𝜃𝑛 by gradient descent with a step size 𝛼 > 0

𝜃𝑛+1 ← 𝜃𝑛 − 𝛼∇𝜃 L̂ (𝜃𝑛) .

6: end for
7: return 𝑢𝜃𝑁 as the predicted viscosity solution to the HJ PDE (3).
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Comparison with Prior Works

Question: Does this approach effectively address the key limitations of pre-
vious works?

▶ The curse of dimensionality associated with mesh-based methods., The proposed approach is mesh-free.
▶ The computational challenges of the Legendre transform in Hopf

formula-based methods., The proposed approach does not require the Legendre transform.
▶ The inefficiency of computing single characteristic trajectories in optimal

control-based methods., The proposed approach does not compute individual trajectories.
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Numerical Results

▶ Example 1 (Convex): 𝐻 (p) = 1
2 ‖p‖2

2 and 𝑔 (x) = ‖x‖1.
▶ Example 2 (Concave): 𝐻 (p) = − 1

2 ‖p‖2
2 and 𝑔 (x) = ‖x‖1.

▶ Example 3 (Level set): 𝐻 (p) = ‖p‖2 and 𝑔 is the signed distance function
for two disjoint circles.

Table 1: The mean squared errors with the exact solution, the average computational time
per epoch, and the memory usage.

Problem 𝑑 = 1 𝑑 = 10 𝑑 = 40

Example 1 1.14E-7 2.56E-5 1.30E-3
Example 2 8.59E-6 1.63E-4 1.23E-3
Example 3 7.08E-6 5.57E-5 1.13E-3

Time (s) per Epoch 0.01518 0.01630 0.01864
Memory (MB) 42.648 42.648 43.623
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Numerical Results

Table 2: Nonconvex examples

Problem Hamiltonian 𝐻 Initial function 𝑔

Example 4 − cos
(∑𝑑

𝑖=1 𝑢𝑥𝑖 + 1
)

− cos
(
𝜋
𝑑

∑𝑑
𝑖=1 𝑥𝑖

)
Example 5 sin

(
𝑢𝑥 + 𝑢𝑦

)
𝜋 (|𝑦 | − |𝑥 |)

Example 6 𝑢𝑥𝑢𝑦 sin(𝑥) + cos(𝑦)
Example 7

∬
𝑢𝑥 + 𝑢𝑦 + 1 1

4 (cos (2𝜋𝑥) − 1) (cos (2𝜋𝑦) − 1) − 1

Example 8 -
∬

𝑢𝑥 + 𝑢𝑦 + 1 cos (2𝜋𝑥) − cos (2𝜋𝑦)
Example 9 𝑢3

𝑥 − 𝑢𝑥 − 1
10 cos (5𝑥)
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Numerical Results

(a) Example 7 (Eikonal)

(b) Example 8 (Combustion)
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Optimal Transport

For two distributions 𝜇, 𝜈 ∈ P (Ω) supported on Ω ⊂ R𝑑 , optimal transport (OT)
problem seeks a map 𝑇 that transforms 𝜇 to 𝜈 whilst minimizing the cost ℓ.
Monge Formulation

𝑊𝑐 (𝜇, 𝜈) ∶= inf
𝑇♯𝜇=𝜈

∫
Ω
ℓ (x − 𝑇 (x)) d𝜇 (x) . (8)

Benamou-Brenier fluid dynamical formulation

inf
𝑣

E𝜇

[∫ 𝑡 𝑓

0
ℓ (𝑣 (x(𝑡), 𝑡)) d𝑡

]
(9)

s.t. ¤x = 𝑣 (10)
x(0) ∼ 𝜇, x(𝑡 𝑓 ) ∼ 𝜈, (11)

HJ equation {
𝜕𝑢
𝜕𝑡 − ℎ (∇𝑢) = 0 in Ω × (0, 𝑡 𝑓 )
𝑢 = 𝑔 on Ω × {𝑡 = 0},

(12)
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Method of Characteristics

The viscosity solution is theoretically characterized by the characteristic ODEs
¤x = ∇ℎ (13a)
¤𝑢 = −ℎ + pT∇ℎ (13b)
¤p = 0, (13c)

Bidirectional OT Map
A bidirectional formulation of the OT map arises from the forward and backward
characteristic flows of the associated HJ equation:

● Forward Map : 𝑇⋆(x) = x − 𝑡 𝑓∇ℎ (∇𝑢 (x, 0)) , x ∼ 𝜇, (14)

● Backward Map:
(
𝑇⋆

)−1 (y) = y + 𝑡 𝑓∇ℎ
(
∇𝑢

(
y, 𝑡 𝑓

) )
, y ∼ 𝜈. (15)
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Characteristic-based OT Learning

We propose a deep learning framework for OT based on HJ characteristics,
consisting of two key steps:

1 Learning the Viscosity Solution: Train a neural network 𝑢𝜃 to approximate
the viscosity solution using the implicit solution formula of the HJ equation.

2 Recovering the OT Map: Obtain the bidirectional OT map from the learned
solution by the characteristic-based formulation

𝑇𝜃 (x) = x − 𝑡 𝑓∇ℎ (∇𝑢𝜃 (x, 0)) , x ∼ 𝜇,
(𝑇𝜃 )−1 (y) = y + 𝑡 𝑓∇ℎ

(
∇𝑢𝜃

(
y, 𝑡 𝑓

) )
, y ∼ 𝜈.

Method Optimization # Networks OT direction Sampling Optimality of 𝑇
Dual Formulation Min-Max Two One-way Direct No
Dynamical Models Min Single Bidirectional Iterative No
HJ-based (Proposed) Min Single Bidirectional Direct Yes

Table 3: Comparison of key features across different OT model approaches.
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2D Examples
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Accuracy of Learned OT Map

Evaluate the learned transport map in the Gaussian-to-Gaussian setting,
𝜇 = N

(
0, Σ𝜇

)
and 𝜈 = N (0, Σ𝜈), where a closed-form solution to the OT is

available.

Table 4: Quantitative comparison of L2−UVP(↓) across OT methods in increasing
dimensions.

Model 𝑑 = 2 𝑑 = 4 𝑑 = 8 𝑑 = 16 𝑑 = 32 𝑑 = 64

NOT 77.248 125.419 114.056 176.086 182.287 196.831
WGAN-QC 1.596 5.897 31.0367 59.314 113.237 141.407
LS 5.806 9.781 15.963 25.232 41.445 55.360
MM-v1 0.161 0.172 0.173 0.210 0.374 0.415
HJ-PINN 0.080 0.069 0.163 0.458 0.576 1.683
Ours 0.010 0.021 0.086 0.146 0.436 0.858
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Class-Conditional OT
Class-wise OT on the MNIST dataset (28 × 28), transporting digits from
{0, 1, 2, 3, 4} to its corresponding digit in {5, 6, 7, 8, 9} (i.e., 0→5, 1→6, ..., 4→9).

(c) Forward (d) Backward
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Conclusion

▶ Proposed a novel implicit solution formula for HJ PDEs derived from the
characteristics.

▶ Recovered the classical Hopf formula in convex settings, while simplifying it
by eliminating the need for Legendre transforms.

▶ Developed a simple and effective deep learning-based method for solving
high-dimensional HJ PDEs, mitigating the curse of dimensionality.

▶ Demonstrated the scalability and effectiveness of the proposed method across
various high-dimensional and nonconvex benchmark problems.

▶ Showed that the implicit formula, together with characteristic flows, enables
an efficient and principled approach to solving optimal transport problems.
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Thank you!
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